Efficient Computational Design of Tiling Arrays Using a Shortest Path Approach
نویسندگان
چکیده
Genomic tiling arrays are a type of DNA microarrays which can investigate the complete genome of arbitrary species for which the sequence is known. The design or selection of suitable oligonucleotide probes for such arrays is however computationally difficult if features such as oligonucleotide quality and repetitive regions are to be considered. We formulate the minimal cost tiling path problem for the selection of oligonucleotides from a set of candidates, which is equivalent to a shortest path problem. An efficient implementation of Dijkstra’s shortest path algorithm allows us to compute globally optimal tiling paths from millions of candidate oligonucleotides on a standard desktop computer. The solution to this multi-criterion optimization is spatially adaptive to the problem instance. Our formulation incorporates experimental constraints with respect to specific regions of interest and tradeoffs between hybridization parameters, probe quality and tiling density easily. Solutions for the basic formulation can be obtained more efficiently from Monge theory.
منابع مشابه
Developing the Performance of Tiling Arrays
Genomic tiling arrays are able to inspect the genome of haphazard species for which the sequence is known. The plan of proper oligonucleotide probes for such arrays is computationally difficult if features such as oligonucleotide quality and recurring regions are considered. Prior works have developed the minimal tiling path problem for the choice of oligonucleotides using Dijkstra’s shortest p...
متن کاملImproving average time complexity of Tiling Arrays Using A* Algorithm
Tiling Arrays hybridize labeled target molecules to unlabeled probes fixed on to a solid surface. Tiling arrays vary in the character of the probes. Number of features on a single array can range from 10,000 to greater than 6,000,000, with each feature containing millions of copies of one probe ABSTRACT Genomic tiling arrays are able to inspect the entire genome of random species for which the ...
متن کاملTwo optimal algorithms for finding bi-directional shortest path design problem in a block layout
In this paper, Shortest Path Design Problem (SPDP) in which the path is incident to all cells is considered. The bi-directional path is one of the known types of configuration of networks for Automated Guided Vehi-cles (AGV).To solve this problem, two algorithms are developed. For each algorithm an Integer Linear Pro-gramming (ILP) is determined. The objective functions of both algorithms are t...
متن کاملFinding the Shortest Hamiltonian Path for Iranian Cities Using Hybrid Simulated Annealing and Ant Colony Optimization Algorithms
The traveling salesman problem is a well-known and important combinatorial optimization problem. The goal of this problem is to find the shortest Hamiltonian path that visits each city in a given list exactly once and then returns to the starting city. In this paper, for the first time, the shortest Hamiltonian path is achieved for 1071 Iranian cities. For solving this large-scale problem, tw...
متن کاملA New Algorithm for the Discrete Shortest Path Problem in a Network Based on Ideal Fuzzy Sets
A shortest path problem is a practical issue in networks for real-world situations. This paper addresses the fuzzy shortest path (FSP) problem to obtain the best fuzzy path among fuzzy paths sets. For this purpose, a new efficient algorithm is introduced based on a new definition of ideal fuzzy sets (IFSs) in order to determine the fuzzy shortest path. Moreover, this algorithm is developed for ...
متن کامل